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Abstract
In this note,we give a complete classification of the (non-degenerate) symmetric
invariant bilinear forms on Novikov algebras in dimension 2 and 3, which can
be regarded as an addendum of the classification of Novikov algebras in low
dimensions given in our previous work (Bai C M and Meng D J 2001J. Phys.
A: Math. Gen. 34 1581–94).

PACS numbers: 02.20.−a, 02.10.−v, 47.20.−k

Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic
type [1–4] and Hamiltonian operators in the formal variational calculus [5–8]. We have
obtained the classification of the Novikov algebras in low dimensions [9]; there is a kind
of realization theory of Novikov algebras [10, 11]. Furthermore, it is important to study
the invariant bilinear forms on Novikov algebras. In fact, the (non-degenerate) symmetric
invariant bilinear forms on Novikov algebras are related to the pseudo-Riemannian metric
and their non-linear changes [3]; they were first studied (mainly on the associative Novikov
algebras) in references [3, 4].

LetA be a finite-dimensional Novikov algebra over the base fieldF with a bilinear product
(x, y) → xy, that is,A satisfies

(xy)z − x(yz) = (yx)z − y(xz) (1)

(xy)z = (xz)y (2)

for anyx, y, z ∈ A. Let {e1, . . . , en} be a basis ofA. A bilinear formf : A × A → F is
invariant if and only if

f (eiej , ek) = f (ei, ekej ). (3)

If we let

fij = f (ei, ej ) (4)
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then the formf under the basis{e1, . . . , en} is completely decided by the matrixF = (fij ).
Furthermore, the form is symmetric if and only ifF is symmetric and the form is non-
degenerate if and only if the determinant ofF is not zero. All the (symmetric) invariant
bilinear forms span a linear space.

Let {cij
k } be the set of structure constants ofA, i.e.,

eiej =
n∑
k

c
ij

k ek. (5)

Then by equation (3), we have

n∑
l=1

c
ij
l flk =

n∑
l=1

c
kj
l fil . (6)

This means thatfij can be solved directly through these homogeneous linear equations with

the coefficientscij

k .
In particular, it is interesting to see that the symmetry of the formf is not completely

‘independent’ with the invariance off , that is, on some Novikov algebras, the symmetry of
the invariant bilinear form is not an additional condition but a consequence of the invariance.

Example. Let us see the invariant bilinear forms on two-dimensional Novikov algebras over
the complex number field, for which the classification is given in [9]. Through equation (6)
with direct calculation, we have table 1 (we use the same symbols as in [9]).

Table 1.

Symmetric invariant Determinant of
Type Invariant bilinear forms bilinear forms symmetric forms

(T1) F =
(

f11 f12
f21 f22

)
F =

(
f11 f12
f12 f22

)
f11f22 − f 2

12

(T2) F =
(

f11 f12
f12 0

)
F =

(
f11 f12
f12 0

)
−f 2

12

(T3) F =
(

0 f12
f12 f22

)
F =

(
0 f12

f12 f22

)
−f 2

12

(N1) F =
(

f11 0
0 f22

)
F =

(
f11 0
0 f22

)
f11f22

(N2) F =
(

f11 0
0 f22

)
F =

(
f11 0
0 f22

)
f11f22

(N3) F =
(

f11 f12
f12 0

)
F =

(
f11 f12
f12 0

)
−f 2

12

(N4) F =
(

f11 f12
f21 f22

)
F =

(
f11 f12
f12 f22

)
f11f22 − f 2

12

(N5) F =
(

0 f12
f12 f22

)
F =

(
0 f12

f12 f22

)
−f 2

12

(N6) F =
(

0 f12
f12 f22

)
F =

(
0 f12

f12 f22

)
−f 2

12

So we know that except (T1) and (N4) the symmetry of invariant bilinear forms on two-
dimensional Novikov algebras are completely decided by the invariance. We also would like
to point out that the case for (T3) is an example given by Zel’manov in [4].
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Next we give all the symmetric invariant bilinear forms on three-dimensional Novikov
algebras over the complex number field in table 2 through equation (6) with direct calculation
(we use the same symbols as in [9]):

Table 2.

Symmetric invariant Symmetric invariant
Type bilinear forms detF Type bilinear forms detF

(A1) F =
(

f11 f12 f13
f12 f22 f23
f13 f23 f33

)
detF (A2) F =

( 0 0 f13
0 f22 f23

f13 f23 f33

)
−f22f

2
13

(A3) F =
(0 0 0

0 f22 f23
0 f23 f33

)
0 (A4) F =

( 0 0 f22
0 f22 f23

f22 f23 f33

)
−f 3

22

(A5) F =
(0 0 0

0 f22 f23
0 f23 f33

)
0 (A6) F =

(0 0 0
0 f22 f23
0 f23 f33

)
0

(A7) F =
( 0 0 f22

0 f22 f23
f22 f23 f33

)
−f 3

22 (A8) F =
( 0 0 f13

0 0 f23
f13 f23 f33

)
0

(A9) F =
(

f11 0 f13
0 0 f23

f13 f23 f33

)
−f11f

2
23 (A10) F =

( 0 0 f13
0 0 f23

f13 f23 f33

)
0

(A11) F =
( 0 0 f13

0 0 f23
f13 f23 f33

)
0 (A12) F =

( 0 0 f13
0 0 f23

f13 f23 f33

)
0

(A13) F =
( 0 0 f13

0 2f13 f23
f13 f23 f33

)
−2f 3

13

(B1) F =
(

f11 0 0
0 f22 0
0 0 f33

)
f11f22f33 (B2) F =

( 0 0 f13
0 f22 0

f13 0 f33

)
−f22f

2
13

(B3) F =
(

f11 0 f13
0 f22 0

f13 0 f33

)
f22

(
f11f33 − f 2

13

)
(B4) F =

( 0 0 f13
0 f22 0

f13 0 f33

)
−f22f

2
13

(B5) F =
( 0 0 f13

0 f22 0
f13 0 f33

)
−f22f

2
13

(C1) F =
(

f11 f12 0
f12 f22 0
0 0 f33

)
f33

(
f11f22 − f 2

12

)
(C2) F =

( 0 0 f13
0 f22 0

f13 0 f33

)
−f22f

2
13

(C3) F =
(

f11 0 f13
0 f22 0

f13 0 f33

)
f22

(
f11f33 − f 2

13

)
(C4) F =

( 0 0 f13
0 f22 0

f13 0 f33

)
−f22f

2
13

(C5) F =
( 0 0 f13

0 f22 0
f13 0 f33

)
−f22f

2
13 (C6) F =

( 0 0 f13
0 f22 f23

f13 f23 f33

)
−f22f

2
13

(C7) F =
( 0 0 f13

0 0 f23
f13 f23 f33

)
0 (C8) F =

(
f11 f12 f13
f21 f22 f23
f13 f23 f33

)
detF

(C9) F =
( 0 0 f13

0 f22 f23
f13 f23 f33

)
−f22f

2
13 (C10) F =

( 0 0 f13
0 0 f23

f13 f23 f33

)
0

(C11) F =
( 0 0 f13

0 0 f23
f13 f23 f33

)
0 (C12) F =

( 0 0 f13
0 0 f23

f13 f23 f33

)
0
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Table 2. (Continued)

Symmetric invariant Symmetric invariant
Type bilinear forms detF Type bilinear forms detF

(C13) F =
( 0 0 f13

0 0 f23
f13 f23 f33

)
0 (C14) F =

( 0 0 f13
0 0 f23

f13 f23 f33

)
0

(C15) F =
( 0 0 f13

0 0 f23
f13 f23 f33

)
0 (C16) F =

( 0 0 f13
0 f22 f23

f13 f23 f33

)
−f22f

2
13

(C17) F =
( 0 0 f13

0 0 f23
f13 f23 f33

)
0 (C18) F =

(
f11 0 f13
0 0 0

f13 0 f33

)
0

(C19) F =
(

f11 0 f13
0 0 0

f13 0 f33

)
0

(D1) F =
(

f11 f12 0
f12 0 0
0 0 f33

)
−f33f

2
12 (D2) F =

(
f11 0 f13
0 0 f11

f13 f11 f33

)
−f 3

11

(D3) F =
(

f11 0 f13
0 0 f11

f13 f11 f33

)
−f 3

11 (D4) F =

 f11 0 f13

0 0 1
2f11

f13
1
2f11 f33


 − 1

4f 3
11

(D5) F =

 f11 0 f13

0 0 1
2f11

f13
1
2f11 f33


 − 1

4f 3
11 (D6) F =

(
f11 0 f13
0 0 lf11

f13 lf11 f33

)
−l2f 3

11

(E1) F =
( 0 f12 0

f12 f22 0
0 0 f33

)
−f33f

2
12

At the end of this note, we give the following conclusion from the above discussion:

(a) There exist non-degenerate symmetric invariant bilinear forms on any two-dimensional
Novikov algebras. There is no non-degenerate symmetric invariant bilinear form on some
three-dimensional Novikov algebras no matter whether they are associative or not [4].

(b) We can see that many (non-isomorphic)Novikov algebras have the same (non-degenerate)
symmetric bilinear forms. One of the reasons is perhaps due to their close relations with
the commutative associative algebras through the realization theory [10, 11].

(c) We would like to point out that the symmetric invariant bilinear forms on (T1), (A1), (N4)
and (C8) are a little ‘special’: any symmetric bilinear form is invariant. Note that (C8)
just corresponds to the Poisson brackets of one-dimensional hydrodynamics, which was
already discussed in [3].
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